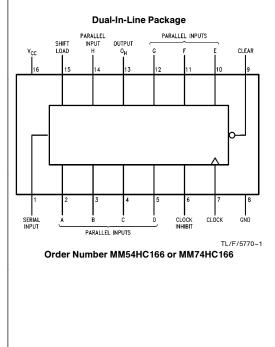
August 1989

MM54HC166/MM74HC166 8-Bit Parallel In/Serial Out Shift Registers

MM54HC166/MM74HC166 8-Bit Parallel In/Serial Out Shift Registers

General Description

The MM54HC166/MM74HC166 high speed 8-BIT PARAL-LEL-IN/SERIAL-OUT SHIFT REGISTER utilizes advanced silicon-gate CMOS technology. It has low power consumption and high noise immunity of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.


These Parallel-In or Serial-In, Serial-Out shift registers feature gated CLOCK inputs and an overriding CLEAR input. The load mode is established by the SHIFT/LOAD input. When high, this input enables the SERIAL INPUT and couples the eight flip-flops for serial shifting with each clock pulse. When low, the PARALLEL INPUTS are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high level edge of the CLOCK pulse through a 2-input NOR gate, permitting one input to be used as a clock enable or CLOCK INHIBIT function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. The CLOCK INHIBIT input should be changed to the high level only while the clock input is high. A direct CLEAR input overrides all other inputs, including the CLOCK, and sets all flip-flops to zero.

The 54HC/74HC logic family is functionally as well as pin out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and Ground.

Features

- Typical propagation delay:
- Wide operating supply voltage range: 2V-6V
- Low input current: $<1 \ \mu A$
- Low quiescent supply current: 80 μA maximum (74HC Series)
- Fanout of 10 LS-TTL loads

Connection Diagram

Function Table

Inputs							rnal		
Clear		Clock		Serial	Parallel	Outputs			
olear		Inhibit			AH	$\mathbf{Q}_{\mathbf{A}}$	Q_B	Q _H	
L	х	Х	х	х	х	L	L	L	
н	Х	L	L	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}	
н	L	L	1 ↑	Х	ah	а	b	h	
н	Н	L	↑	н	Х	н	Q _{An}	Q _{Gn}	
н	Н	L	↑	L	Х	L	Q _{An}	Q _{Gn}	
н	Х	Н	1	Х	Х		Q_{B0}		

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

 \uparrow = Transition from low to high level

 $a\ldots h=$ The level of steady-state input at inputs A through H, respectively $Q_{A0}, Q_{B0}, Q_{H0} =$ The level of Q_A, Q_B, Q_H , respectively, before the indicated steady-state input conditions were established

 $Q_{An},\,Q_{Gn}=$ The level of $Q_{A},\,Q_{G},$ respectively, before the most recent \uparrow transition of the clock

© 1995 National Semiconductor Corporation TL/F/5770

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-0.5V to +7.0V

 \pm 20 mA

 $\pm 25 \text{ mA}$

 \pm 50 mA

600 mW

500 mW

260°C

-1.5V to $V_{CC}\!+\!1.5V$

-0.5V to $V_{CC}\!+\!0.5V$

 -65°C to $+150^\circ\text{C}$

Supply Voltage (V_{CC})

DC Input Voltage (VIN)

Power Dissipation (P_D) (Note 3)

S.O. Package only

Lead Temperature (T_L)

(Soldering, 10 seconds)

DC Output Voltage (V_{OUT})

Clamp Diode Current (I_{IK}, I_{OK})

DC Output Current, per Pin (I_{OUT})

DC V_{CC} or GND Current, per Pin (I_{CC})

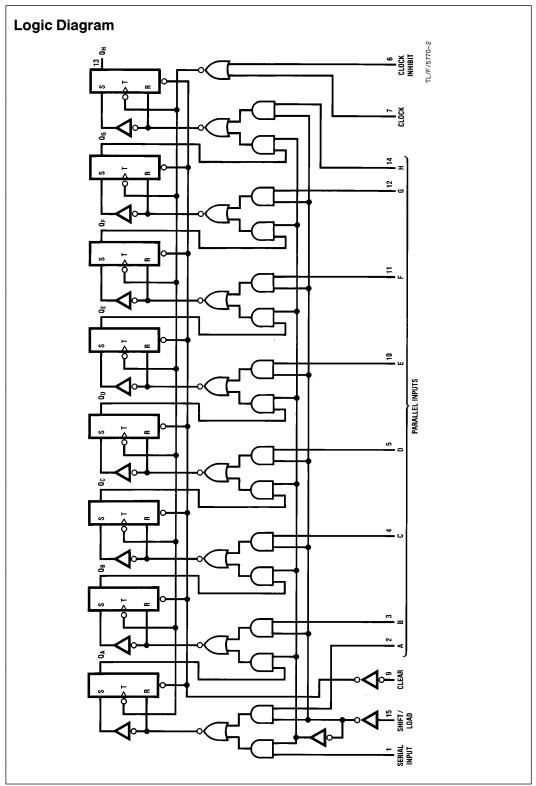
Storage Temperature Range (T_{STG})

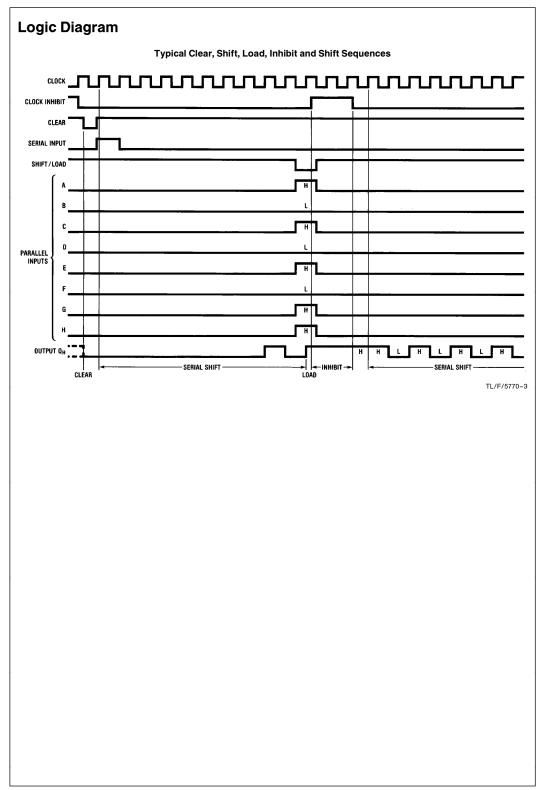
Operating Conditions

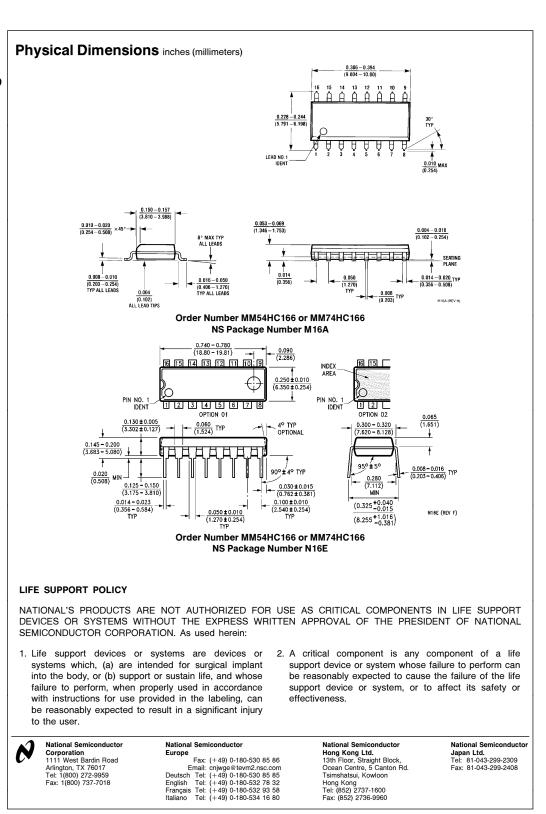
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+ 125	°C
Input Rise or Fall Times (t _r , t _f)			
$V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A =-40°C to +85°C	54HC T _A =-55°C to +125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	>>>
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH} Mini Lev	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	> >
L	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	> >
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC} \text{ or GND}$ $V_{CC} = 2V-6V$	6.0V		±0.1	±1.0	±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC} \text{ or GND}$ $I_{OUT} = 0 \ \mu A$ $V_{CC} = 2V - 6V$	6.0V		8.0	80	160	μΑ


Note 1: Absolute Maximum ratings are those values beyond which damage to the device may occur.


Note 2: Unless otherwise specified all voltages are referenced to ground.


Note 3: Power dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C. Note 4: For a power supply of 5V±10%, the worst-case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5V. Thus, the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V, respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

**VIL limits are currently tested at 20% of V_{CC}. The above VIL specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

Symbol		arameter	Vcc	T _A =	25°C	T _A =-4	74HC 10°C to +85°C	$\begin{array}{c c} & 54HC \\ T_{A} = -55^{\circ}C \text{ to } + 125^{\circ}C \\ \hline \text{eed Limits} \end{array}$		Units
				Тур						
f _{MAX}	Maximu Operati	um ing Frequency	2.0V 4.5V 6.0V		6 31 36		5 25 29	4.2 21 25		MHz MHz MHz
t _{PHL} / t _{PLH}		um Propagation Clock to Q _H	2.0V 4.5V 6.0V	14	140 28 24		175 35 30	210 42 36		ns ns ns
t _{PHL} / t _{PLH}	Maximum Propagation Delay Clear to Q _h		2.0V 4.5V 6.0V	11	130 26 22	165 35 30		195 39 33		ns ns ns
t _{su}		m Setup Time oad to Clock	2.0V 4.5V 6.0V		80 16 14	100 20 18		120 24 20		ns ns ns
t _{su}		m Setup Time efore Clock	2.0V 4.5V 6.0V		80 16 14	100 20 18		120 24 20		ns ns ns
t _{REM}	Minimum Removal Time Clear to Clock		2.0V 4.5V 6.0V		0 0 0		0 0 0	0 0 0		ns ns ns
t _h	Maximum Hold Time Data after Clock		2.0V 4.5V 6.0V		0 0 0	0 0 0		0 0 0		ns ns ns
t _r , t _f	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	7	75 15 13	95 19 16		110 22 19		ns ns ns
t _w	Minimum Pulse Width Clock or Clear		2.0V 4.5V 6.0V		80 16 14	100 20 16		120 24 20		ns ns ns
C _{pd}	Power Dissipation Capacitance (Note 5)		(per package)		100					pF
C _{in} Maximum Input Capacitance			5	10		10	10		pF	
AC EI	ectric	al Charact	eristics	V _{CC} =	5V, C _L =	= 15 pF, T,	$_{\rm A}$ = 25°C, t _r = t _f	= 6 ns unless other	wise not	ed
			ameter		Ту	pical	Guaran	teed Limits	Ur	nits
f _{MAX}		Maximum Operating Frequency						31		Hz
t _{PHL} / t _{PLH}		Maximum Propagation Delay Clock to Q _h					16		ns	
t _{PHL} / t _{PLH}		Maximum Propagation Delay Clear to Q _h						12		าร
t _{su}		Minimum Setup Time Shift/Load High to Clock					16		ns	
			Minimum Setup Time Data before Clock				16		ns	
^t REM		Minimum Removal Time Clear to Clock		9			0		ns	
Data afte		Data after						0	r	าร
t _w	tw		Pulse ck or Clear					16	r	าร

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.