

Data sheet acquired from Harris Semiconductor SCHS062

CMOS

Binary Rate Multiplier

High-Voltage Types (20-Volt Rating)

rate multiplier that provides an output pulse rate multiplier that provides an output pulse rate that is the clock-input-pulse rate multiplied by 1/16 times the binary input. For example, when the binary input number is 13, there will be 13 output pulses for every 16 input pulses. This device may be used in conjunction with an up/down counter and control logic used to perform arithmetic operations (adds, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigometric functions, A/D and D/A conversions, and frequency division.

For words of more than 4 bits, CD4089B devices may be cascaded in two different modes: an Add mode and a Multiply mode (see Figs. 14 and 15). In the Add mode some of the gaps left by the more significant unit at the count of 15 are filled in by the less significant units. For example, when two units are cascaded in the Add mode and programmed to 11 and 13, respectively, the more significant unit will have 11 output pulses for every 16 input pulses and the other unit will have 13 output pulses for every 256 input pulses for a total of

11 13 189 16 256 256

In the Multiply mode the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second multiplier. Thus the output rate will be 11 13 143

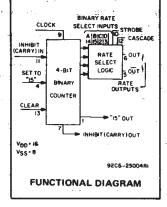
16 16 256

Features:

- Cascadable in: multiples of 4-bits
- Set to "15" input and "15" detect output
- 100% tested for guiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Numerical control
- Instrumentation
- Digital filtering
- Frequency synthesis

The CD4089B has an internal synchronous 4-bit counter which, together with one of the four binary input bits, produces pulse trains as shown in Fig. 2.

If more than one binary input bit is high, the resulting pulse train is a combination of the separate pulse trains as shown in Fig. 2.

The CD4089B types are supplied in 16-lead ceramic dual-in-line packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD4089B Types

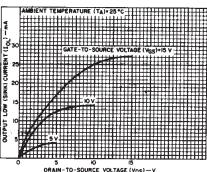


Fig. 1 — Typical output low (sink) current characteristics.

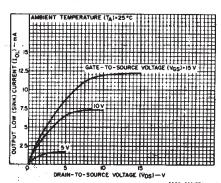


Fig. 2 - Minimum output low (sink) current characteristics.

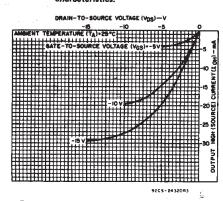


Fig. 3 — Typical output high (source) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)

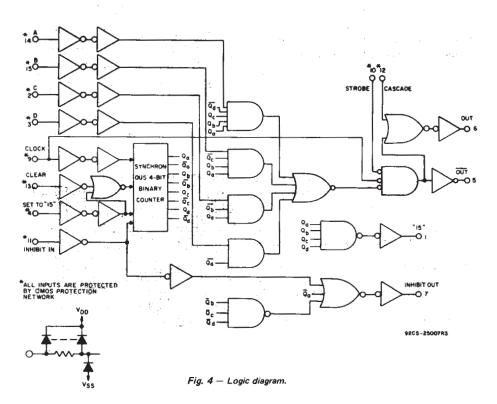
Voltagea referenced to VSS Terminal)

-0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS
-0.5V to VDD +0.5V DG INPUT CURRENT, ANY ONE INPUT

±10mA
POWER DISSIPATION PER PACKAGE (PD):

For TA = -55°C to +100°C
500mW
For TA = +100°C to +125°C
Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURERANGE (All Package Types)
100mW


OPERATING-TEMPERATURE RANGE (TA)
55°C to +125°C
STORAGE TEMPERATURE RANGE (Tatg)
-65°C to +150°C

LEAD TEMPERATURE (DURING SOLDERING):

At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max+265°C

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIÑ	UNITS		
	·	(V)	Min.	Max.	
Supply-Voltage Range (For TA Temperature Range)	= Full Package-		3	18	٧
Set or Clear Pulse Width,	t _W	5 10 15	160 90 60	<u>.</u> .	ns
Clock Pulse Width,	t _W	5 10 15	330 170 100	_ _ _ _	ns
Clock Frequency,	^f CL	5 10 15	dc	1.2 5 2.5 3.5	MHz
Clock Rise or Fall Time.	trCL or tfCL	5, 10,15	_	15	μς
Inhibit In Setup Time,	^t su	5 10 15	100 40 20	_ ·	ns
Inhibit In Removal Time,	[‡] REM	5 10 15	240 130 110		ns
Set Removal Time,	[†] REM	5 10 15	150 80 50		ns
Clear Removal Time,	^t REM	5 10 15	60 40 30	-	ns

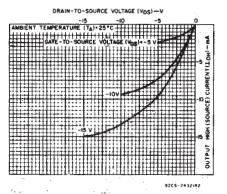


Fig. 5 — Minimum output high (source) current characteristics.

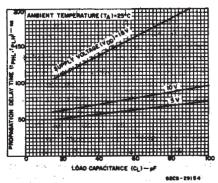


Fig. 6 — Typical propagation delay time as a function of load capacitance (Clock or Strobe to Out).

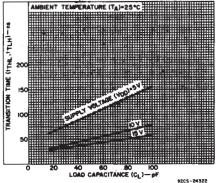


Fig. 7 — Typical transition time as a function of load capacitance.

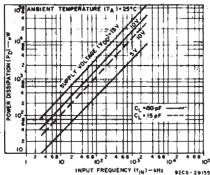


Fig. 8 — Typical dynamic power dissipation as a function of input frequency.

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TES							
		V _{DD}		UNITS				
		v	Min.	- Тур.	Max.			
Propagation Delay Time, tpHL, tpLH		5	_	110	220			
Clock to Out	İ	10	-	55	110			
		15		45	90	ns		
Clock or Strobe to Out		5	-	150	300			
Clock of Strobe to Out		10 15	_	75 60	150 120			
		5	_	360	1			
Clock to Inhibit Out		10	_	160	720 320	ns		
High Level to Low Level		15	_	110	220	113		
		5	_	250	500	-		
Low Level to High Level		10	_	100	200	ns		
		15	-	75	150			
a		5	-	380	760			
Clear to Out		10	-	175	350	ns		
		15		130	260			
Clock to "9" or "15" Out		5	_	300	600			
S.OCK TO S OF 15 OUT		10 15	_	125 90	250 180	ns		
		5		90	180			
Cascade to Out		10	- :	45	90	ns		
		15	_	35	70			
		5		160	320			
Inhibit In to Inhibit Out		10	-	75	150			
		15	_	55	110	ns		
4		5		330	660			
Set to Out		10	-	150	300			
		15		110	220			
Transition Time, this trip		5	-	100	200			
Transition Time, tTHL, tTLH	.*	10 15	-	50 40	100 80	ns		
		5	1.2	2.4	- 50			
Maximum Clock Frequency, fCL	-	10	2.5	5	_	MHz		
. , ,		15	3.5	7				
	. "	5		165	330			
Minimum Clock Pulse Width, tW		10	- 1	85	170	ns		
		15		50	100			
Clock Rise or Fall Time, trout tea		5	- ,	_	15			
Clock Rise or Fall Time, trCL, tfCL		10 15			15 15	μs		
		· 5	- '	-		•		
Minimum Set or Clear Pulse Width, t _W		10	_	80 45	160 90	ns		
		15	_	30	60	113		
		5		50	100			
Minimum Inhibit-In Setup Time, t _{SU}		10	_	20	40	ns		
		15		10	20			
Minimum Inhibit In		5	-	120	240			
Removal Time, tREM		. 10	-	65	130	ns		
		15	_	55	110			

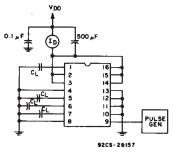


Fig. 9 — Dynamic power dissipation test circuit.

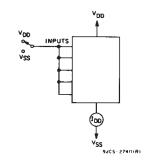


Fig. 10 - Quiescent device current test circuit.

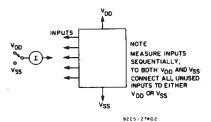


Fig. 11 - Input-current test circuit.

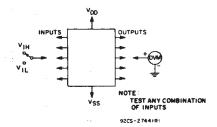
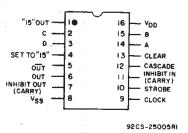



Fig. 12 - Input-voltage test circuit.

TOP VIEW
TERMINAL ASSIGNMENT

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C (cont'd) Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIO		UNITS			
		V _{DD}				
		V	Min.	Тур.	Max.	
Minimum Set Removal Time, tREM	1	5 10 15	-	75 40 25	150 80 50	ns
Minimum Clear Removal Time, tRE	М	5 10 15	- - -	30 20 15	60 40 30	ns
Input Capacitance, C _{IN}	Any Input	-	i — "	5	7.5	pF

STAT	IC E	LECTRICAL	CHARACTERISTICS
------	------	-----------	-----------------

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							NIT
	V _O	V _{IN}	V _{DD}	55	40	+85	+125	Min.	+25 Typ.	Max.	S
		0.5	5	5	5	150	150		0.04	5	-
Quiescent Device		0,10	10	10	10	300	300		0.04	10	١.
Current,		0,15	15	20	20	600	600	_	0.04	20	μΑ
IDD Max.		0.20	20	100	100	3000	3000		0.08	100	
	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	Н
Output Low (Sink) Current OL Min.		0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	
	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_	
	4.6	0.5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	m.
Output High (Source)	2.5	0,5	5	2	-1.8	-1.3		-1.6	-3.2	_	
Current,	9.5	0,10	10	1.6	-1.5	-1.1	-0.9	-1.3	_	-	
OH Min.	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8	 -	
Output Voltage:	_	0,5	5	0.05					10	0.05	Г
Low-Level,	-	0,10	10		0	.05		0	0.05		
VOL Max.	_	0,15	15		0	.05	-	0	0.05	V	
Output	-	0,5	5	4.95				4.95	5	_	
Voltage:	_	0,10	10	.,	9	9.95	10	_			
High-Level, V _{OH} Min.	-	0,15	15	14.95				14.95	15	-	
7	0.5,4.5		5			1.5		-	_	1.5	Г
Input Low Voltage	1,9	_	10			3		_	, –	3	
VIL Max.	1.5,13.5	-	15	4				-	- 4	4	l۷
Input High	0.5,4.5		5			3.5		3.5	. –	-	
Voltage,	1,9	-	10			7		7	_	_	
V _{IH} Min.	1.5,13.5	_	15			11		11		-	L
Input Current		0,18	18.	±0.1	±0.1	±1	±1.	-	±10-5	±0.1	μ

							TRU	JTH TA	BLE				
INPUTS											OUTPL	JTS	
Number of Pulses or Input Logic Level (0 = Low; 1 = High; X = Don't Care)								0	umber of utput Log = Low; F	ic Leve	1		
D	С	В	A	CLK	INH IN	STR	CAS	CLR	SET	OUT	OUT	INH	"15" OUT
0	0	0	0	16 16	0	0	0	0	0	L	Н	1	1
0	6	ľ	6	16	0	0	0	0	0	1	1	1	1
0	6	1	1	16	0	Ö	0	0	0	2	2	1 1	1 1
0	1	0	0	16	0	0	0	0	0	4	4	1	1
0	ľ	٥	1	16	0	0	٥	١٥	0	5	5		
0	ĺ	1	o	16	0	o	ŏ	١٥	o	6	6	;	1
0	1	1	1	16	0	0	o	0	0	7	7	1	i
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	. 0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	. 11	11 :	. 1	1
1	1	0	0	16	0	0	0	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
x	x	х	х	16	1	0	- O	0	0	t	t	н	†
X	Х	1	Х	16	0	1	0	0	0	L	н	1	1
Х	х	х	х	16	0	0	1	0	0	Н	*	1	1
1	Х	X	X	16	0	0	0	1	0	16	16	Н	L
0	Х	Х		16	0	0	0	1	0	L	Н	Н.	L
X	Х	Х	X	16	0	-0	0	Х	1	L	Н	L :	н

TRUTH TARLE

MOST SIGNIFICAN'	T LEAST SIGNIFIÇANT DIGIT
O C DRM () OUT OUT OUT OUT OUT OUT OUT CASC OUT CASC INH IN IN "15" ST CLEAR S	B ORM © OUT O INH OUT CLOCK CASC (INH IN IST ST CLEAR S
CLOCK	9205,25008

Fig. 13 – Two CD4089B's cascaded in the "Add" mode with a preset number

of 189
$$\left(\frac{11}{16} + \frac{13}{256} = \frac{189}{256}\right)$$

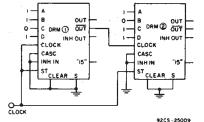


Fig. 14 — Two CD4089B's cascaded in the "Multiply' mode with a preset number

of 143
$$\left(\frac{11}{16} \times \frac{13}{16} = \frac{143}{256}\right)$$
.

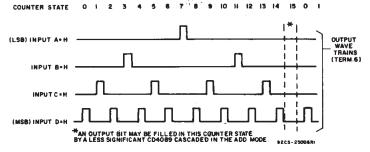
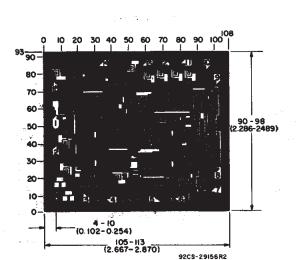



Fig. 15 - Timing diagram.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch).

Dimensions and Pad Layout for CD4089BH

^{*} Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

[†] Depends on internal state of counter.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.